

Economic Viability of Biofloc Technology (BFT) vs. Traditional Systems for Small-scale Tilapia Farmers in Bogor, Indonesia

Kristina Resmi Setiani*, Pall Jensson, Birgitta Andreasen

Background

- Indonesia's aquaculture potential: the second-largest aquaculture producer globally.
- 80% of aquaculture is small-scale and traditional, often inefficient.
- Biofloc Technology (BFT) is a sustainable approach utilising microbial communities to treat water, recycle nutrients, and provide supplementary protein to cultured species.
- Is BFT economically viable for small-scale tilapia farming despite its benefits? (By comparing Net Present Value).

Different types of production systems used for tilapia farming in Bogor, Indonesia.

b. Traditional system using concrete ponds.

Objectives

approach.

- Assessing the profitability of BFT and traditional systems.
- Developing a scalable adoption model of BFT for small-scale tilapia farming.
- Identifying barriers to BFT adoption.

Methodology

Results

- BFT generates an NPV nearly 5x higher than concrete and around 8x higher than tarpaulin.
- BFT offers 4x shorter payback periods than other systems.
- BFT shows higher NPV, despite the same IDR 30M investment.

- A 50% price increase generates over 3x higher profit than the baseline.
- A 30% increase in operational costs causes the NPV to become negative.

- Larger tanks (4m) are more cost-efficient and profitable → 51% lower unit cost, 2x–9x higher NPV than smaller tanks.
- Smaller tanks face higher risks (e.g., pH fluctuations) during rain).

Farmers' responses to BFT adoption barriers

- Fish feed is the most significant portion of operational expenses.
- Fingerling quality affects growth rates, feed conversion rate, and overall yields.
- Limited market access forces farmers to sell to middlemen who pay less, reducing profit margins.

Conclusion

- BFT outperforms economically due to more production cycles (3 harvests annually), higher production volume, and better efficiency (higher stocking density and lower FCR).
- However, its success relies heavily on precise management, skilled operators, and better market access.
- Conventional systems are easier to manage but less productive.
- Larger modular BFT tank (4meter) provides more returns for small-scale farmers.
- High feed costs, poor fingerling quality, and limited market access are key barriers to BFT profitability.

Key Message

"BFT offers a more economically viable option for tilapia farming than traditional systems. However, its adoption by small-scale aquaculture farmers needs integrated support rather than technology transfer alone".

Limitations and Recommendations

- Small sample size for 10 traditional farmers limits the depth of comparative analysis.
- Improve training programs and better market access to help farmers achieve the economic potential of BFT.
- Research effective knowledge transfer methods for diverse small-scale farmers.

Contact Details

*Kristina Resmi Setiani: resmikristina@gmail.com The Ministry of Marine Affairs and Fisheries of Indonesia

